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For q an odd pr ime power, and  1 < n < q, the  Desargues ian  plane P G ( 2 , q )  does not  con ta in  
an  (nq -  q§ 

1. I n t r o d u c t i o n  

A ( k , n ) - a r c  in a projective plane is a set of k points, at most n on every line. 
If  the order of the plane is q, then k < 1 + (q + 1) (n - 1) = qn - q + n with equality if 
and only if every line intersects the arc in 0 or n points. Arcs realizing the upper 
bound are called maximal  arcs. Equality in the bound implies tha t  n lq or n = q + l .  
If  1 < n < q, then the maximal arc is called non-trivial. The only known examples 
of non-trivial maximal arcs in Desarguesian projective planes, are the hyperovals 
(n = 2), and, for n > 2 the Denniston arcs [2] and an infinite family constructed by 

Thas [5, 7]. These exist for all pairs (n,q) = (2a,2b), 0 < a < b. I t  is conjectured 
in [6] tha t  for odd q maximal arcs do not exist. In tha t  paper  this was proved for 

(n,q) -- (3,3h). The special case (n,q) = (3,9) was settled earlier by Cossu [1]. In 
a recent paper  on sets of type (re,n)  [3] this conjecture is labeled "most wanted" 
research problem. In this note we shall show tha t  the conjecture is true in generM. 

We shall consider point sets in the ai~ne plane AG(2 ,q )  instead of PG(2 ,q ) .  
This is no restriction; there is always a line disjoint from a non-trivial maximal  arc. 

The points of AG(2 ,q )  can be identified with the elements of GF(q  2) in a suitable 
way, so that  in fact all point sets can be considered as subsets of this field. Note 
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that three points a, b, c are collinear, precisely when (a-  b) q-1 ~:(a ~- c) zt-q If the 

direction of the line joining a and b is identified with the number (a -  b) q=l, then 
a one-to-one correspondence between the q +  1 directions (or parallel classes) and 

the'~different (q+ Y)-s~..roo~s oLun!V in GF(q 2) is obtained. 
We finish this iti~t0duction with a shdrt discussion on Lueas '  theorem and 

Hasse derivatives. 

Lucas' theorem gives the value of binomial coefficients modulo a prime: Let 

a = ao + alp + a2p 2 +... and b = bo + blp + b2p 2 +... be the p-dry expansion of the 
numbers a and b, wh~re ~ a  n0n-negative integer. Then 

O) = b0 bl b2 ' (modp) .  

This can be proved by expanding ( l + x )  a and using ( l + x )  r = l + x  r whenever r is 
a power of the characteristic p (cf. [4], Section 5). 
In particular we have the following, 

( - 1 ) i ( r ~ . 1 ) = 1  ( m o d p ) f o r  r=pe,  O < i < r ,  

and, more generally 

( -1) i (  r-j-l)i : (i+iJ)" ( m o d p ) f o r  r=pe,  O < i , j < r .  

Hasse derivatives cope with the problem that over a field of characteristic p 
the p-th and higher ordinary ,derivatives of a polynomial vanish identically. The 
k-th Hasse derivative H k (~ith respect to the variable z) is a linear operator on 

polynomials defined by Ht~(x~)='(~)x n -k  if k<_n, and 0 otherwise. If f and g are 
two polynomials then: 

f~ 

H '(fg) = Hk(f)   k(g). 
k=O 

From this it can be seen that  (x-a) k.i f if and only if H i ( f ) (a)  = 0 for i = 0, 1 , . . . ,  k-1.  

2. S d m e  useful  p o l y n o m i a l s  

Let ~ be a non-trivial ( n q - q  § n,n)-arc in AG(2,q)~o G/~(q2), q = ph. For 

simplicity we assume 0 ~ ~.  Let ~[-1] __ {1~bib ~ 33}. Define B(x) to be the 
polynomial 

oo 

B(x) := n (1 - bx) = E( - - ! )kcCkx  k 
bEN k=0 
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where cr k denotes the k-th elementary symmetric function of the set 53, in particular 
ak = 0 for k > 1531. Define the polynomials F in two variables and &k in  one variable 
by 

F(t,  x) := I - [  (1 - (1 - bz)q-l t )  = ~_,(--1)k~kt k 
bE~ k=0 

where ~k is the k-th elementary symmetric  function of the set of po lynomia ls '  

{(1 - bx) q-1 I b E 53}, a polynomial of degree at most k ( q -  1) in x. Again, ~k 

is the zero polynomial for k >  [~l' For xo EGF(q2)\53 [-~1 it follows tha t  F(t,  xo) is 
an n-th power. Indeed, if x 0 = 0  this is clear, and if x 0 r  then 1/xo is a point not 
contained in the arci so that  every line through 1/xo contains a number of points 

of 53 that  is either 0 or n. In the multiset { ( l / x 0 -  b)q-ll  b E 53}, every element 
occurs therefore with multiplicity n, so that  in F(t,  xo) every factor occurs exactly 
n times. 

For x0 E 53[-1] we get that  F(t,  xo) = ( 1 -  tq+l) n - l ,  for in this case every line 
passing through the point 1/xo contains exactly n -  1 other points of 53, so that  

the multiset { ( l / x 0 - b ) q - 1 }  consists of every (q+ 1)-st root of unity repeated n - 1  
times, together with the element 0. This gives 

F(t,  x0) = r I  (1 _ ( l /x0  - b)q- lxq- i t )  = (1 - x ~ - l t q + l )  n-1 = (1 - t q + l )  n - 1 .  

bE~ 

From the shape of F in both cases it can be seen that  for all xo E GF(q2), 
~k(z0) = 0, 0 < k < n, and since the degree of 5 k is at most  k ( q -  1) <q2 ,  these 
functions are in fact identically zero. The first coefficient o f f  that  is not necessarily 
identically zero therefore is ~n. 

The main idea of the non-existence proof is tO 'show that  ^ ~ ~ is a p-th power. 
Together with the fact that  B divides ~n, and the observation that  &n is not 
identically zero, this leads swiftly to a contradiction for p7s 2. 

Since &n(0)= (In~l) : (nq-q+n) = 1, by Lucas' theorem, it is: not identically zero. 

On the other hand the coefficient of t n in ( 1 - t q + l )  n-1 is zero, so ~n(xo )=0  for 

x0 E 53[-1] in other words, B divides 5n. Let Q = ~rn/B. Then Q. is a polynomial 
of degree at most n(q - 1) - nq + q - n = q - 2n. 

Define the power sums corresponding to cr k and ~/c: 

(1) 7r k ~ E b  k and ~r k = E ( 1 - b x ) k ( q - 1 ) =  E .  ( - 1 ) /  k q~- ix 

bE~ bE~ /=0 

For future use we collect the relevant divisibility relations. 
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Lemma 2.1. The following polynomials are divisibIe by x - x q2 : 
1. 5k, unlessnlk  or (q§ l) lk; 
2. &n~k, unless nlk; 
3. ~r k, unless (q+ l) lk; 
4o ~rnSk for a11 k. 

Proof. Unless n l k or (q + 1) lk , &k vanishes for all x C GF(q2), so it follows that  

in these cases (x - x q2) I~k. If n~k then ~k still vanishes for xo C GF(q 2) \N[-1], 

and since B I&n we get the divisibility relation "(x-xq2)l&n&k in this case. For 

xo E GF(q 2) \:~[-1] it follows that #k(xo)=0, because every value is assumed 0 or 

n times, and Pin. If (q+l )~k  and x0CN[ -1] it follows that  

#k(x0)---0+ (~:r C k ) ( n - 1 ) = O .  

Hence (x-xq2)l frk  unless ( q + l ) [ k  and (x-xq2)[#nfrk if ( q + l ) [ k  since Bl&n. | 

3. T h e  N e w t o n  Iden t i t i e s  a n d  some  consequences  

The power sums 7r and the symmetric functions cr are related by the Newton 
identities N(k)  : 

k-1 
k~k + ~ ( - - 1 ) k - J ~ j ~ k - j  = 0, 

j=O 

for all k >_ 0. These identities can be obtained by computing the derivative of B(x)  
to get 

Oo 

u'(x) = Z ~ ' ( * ) =  ~ ( - 1 ) ~  x~-l. 
bE2 k=l 

and comparing the coefficient of x k (resp. t k) after substituting ( 1 -  bx) -1 = 

EF=0r 
The Newton identities N(k): 

k-1 
k~k + Zt-1)~-J~j~_j =0, 

j=0 
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can be derived in a similar way, by computing the partial derivative with respect 
to t of F(t ,x) .  

For all k _< q the degrees of 5 k and ~k are less than q2 so in view of the 
divisibility relations ~k is identically zero for k < q, and so is 5k, unless nIk. By 

considering the Newton Identity N ( q +  1) we find that  

(2) 
q2--1 

&q§ ~-----~'q+l ----- E 7rJ xj" 
j=0 

by (1). Note that  since r 0 = 0  and 7rk_{_q21=Tr k for all k>0 ,  we get that  

#q+l = (x - xq 2) y~. ~k+lx  k 
k=0 

Differentiating F(t, x) with respect to x it follows that  

b E  2 -b(1 - b x ) q - 2 t  ~ [J3] 
(3) Fx(t,x) = 1"7(-1 - - - ~ !  F(t,x)= E ( - 1 ) k 6 ~ t  k. 

k=0 

The expression in front of F(t,x) may be expanded in a formal power series so that  

F~(t,x) = - E E b(1-bx)iq-i-lti F(t,x). 
bE2 i=1 

Expanding the bracket using the Binomial theorem gives 

c~ ['iq-i--1 ] 
.(4) F x ( t ' x ) = - E  [ E ( - 1 ) k ( i q - i - l )  

i=1 I_ k=o . k 7rk+lxk  ti  F(t, x). 

We already observed that  F(t, x) as a function of t is an n-th power modulo t q, and 
the same is of course true for Fx(t,x). It follows that  the same is again true for 

(3O 

-- E E b(1 - bx)iq-i-lt i. 
bE.~ i----1 

[rnq--rn- l'~ _ This gives ~ k-1 ]J,k=-O for O < m < q ,  

for m < q it follows that  
n{rn and all k. Note that  from ~rn--0 
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From (mqk-m)=(rnq-~n-1)+ (rnqk--~-i) follows the important equality 

(6) ( m q - 2 - 1 )  7rk=0  for 0 < r e < q ,  n~m and all k. 

Equating the coefficient of t n in (4) implies 

.nq-n=l 
i_l~ k n q - n - 1  

k=0 ]c 

From @1 - x-'q-17r .x j -- Z-,j=0 3 -- 0 it follows that ~rj = 0 for j < q. This then implies 

that ~n is a p-th power rood xq. By considering the Newton identities relating the 
~k's and the 7rk's it follows that ~j = 0  for j < q unless PlJ and hence B is a p-th 
power rood xq. Therefore their quotient Q which has degree at most q-2n is a p-th 
power, i.e. Ql=0.  

From the proof of the Newton identities it follows that  

B '  ( z  = x q2) = - BCrq+ l .  

Multiplying each side by Q and writing ' i ^ i B Q= (BQ) =a n this is seen to imply the 
important identity 

(7) e ' ( z  - x  q2) = - e~#q+l .  

Our main conclusion, namely that a2 n is a p-th power will follow from consider- 

ing the Newton identity fi[(nq-q+ 2n-1)  modulo ( x - x  q2)2. As it will turn out 
the only relevant #-s involved in this identity will be the #k with k - - - 1  rood n and 
most of these vanish identically. We start by showing that  7ran_ 1 ~ 0 for a <_ q-q/n, 
and then #i(q+l) and ~ri(q+l)+n will be calculated in terms of Hasse derivatives for 

i < n. In this way in particular #(n-1)(q+l) and ~r(n_l)(q+l)+ n are obtained (the 

last two ~ran-l'S). 

4. P r o o f  t h a t  #an_l=_O for  a<_q-q/n 

Recall that,  by definition 

~ a n - - 1  = ~_~(i - bx)(q-! )(an-l) = 

bE2 

(an-i)(q-l) 

E ( a n q - q - a n E 1 ) ( - i ) J ~ r J  xj 
j=0 3 
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From this expansion, and Lucas' theorem, note that  the only exponents j that  occur 
on the left hand side are those with j = 0 , 1  mod~n. Therefore 

: + a?, 

where GO and G1 are polynomials of degree at most a q - q / n - a .  We proceed to show 

that  in fact # a n - ~  = ( x - x q 2 ) G r d .  Recall that  Lemma 2.1 implies #%n-1 is divisible 

by x -  x q2. Indeed, if it is not, then (q+ 1 ) l a n -  1, but this implies a _> q + 1 - q / n .  
I - Ience  

We now use a trick essentially due to R6dei ([4], Section 33), and raise the 

right hand side to the q 2 / n - t h  power, then simplify, using the divisibility relation 

x - x q~ I G]  2 - Gi to obtain 

z - x q~ l xq2 /nGo  + G1. 

The polynomials Go and G1 both have degreeat  most a q L q / n - a  <_ q 2 - q 2 / n - q / n -  

q + q / n  so the right hand side has degree less than q2 and therefore is identically 

zero. So G l = - x q 2 / n G 0  and we have proved that  

7Can- I = : ( x  2 - x q  

One may check directly from the definition, that  

aq--q/n--a 

= . , 7y~L j m 
j=a J n  

1/,%L (aqn q--an+l] 
N o t e t h a t  ~ j n  =:VJ and x j n  J = (ag~-q/n-h) We.mow proceed to. show 

that  in fact G 1 - 0 .  In other words, we want to show that  i0r all j ,  (aq-q/n-a)~7~O 

implies that lrj =0.  

Define the (cyclic) shift operator s on k with 0 < k < q 2  1 by s(q 2 - 1 )  = q 2 _  1 

and s ( k )  = p k  rood q2 _ 1 otherwise. So what s does is cycle the p-ary digits of 

k. Then it follows immediately frpm L~cas' theorem that  \ s ( v ) ] '  

0 < u, v < q2). Moreover we have ~rs(u) = 7r~u and so ~ru = 0 if and only if Us(u) = 0. It 

follows that  it is sufficient to prove that  

( s e - h ( a q  - q / n  - a ) t~r  k = 0 
k 
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for all k ( = s e - h j ) .  Here e and h come from q = p h  and n = p  e, and the  effect of 

se -h  is essentially dividing by q/n modulo  q2 _ 1. If  we write q - a = a(q/n)  + 13, 
with O<_~<q/n, then  0 < a ( < n ) ,  since a < q - q / n .  Using this we get 

se-h(aq = q /n - -  a) = (a-- 1 ) n +  (~-- 1 + ~ q n  = mq- -  m - -  1, 

where m = ~n  + n - c~. In par t icular  m < q and m ~ 0 m o d  n, so t h a t  the  desired 
equal i ty  is exact ly  equat ion (6) f rom the previous section. 

5. C a l c u l a t i o n  o f  ~'i(q+l) and ~i(q+l)+n f o r  i < n 

Recall t ha t  H k s tands  for the k- th  Hasse derivat ive wi th  respect  to x. We will 

wri te  z = x - x  q2. Note t ha t  by the chain rule H k ( f ( 1 -  x ) ) =  ( - - 1 ) k H k ( f ) ( 1 -  x). 

Lemma 5.1. 

P r o o s  

H i _ l ( ~ ) : l - x  i(q2-1) fori<_q 2. 

Hi-1 = Hi-1 (-I)i xJ(r 

E ( - 1 ) J i C ' ) ( j ( q 2 - 1 ) + i - l ) x J ( q 2 - 1 ) i -  1 " 

j=O 

But  if 0 < j < i < q2, then  (J(q2~l_)l+i-1) --- (i7~11) = 0 .  | 

Subst i tu t ing  1 - x  for x changes z into - z  and gives us Hi-1 ( z i / (1 -x ) ) - - -  

( l - x )  i ( r  - 1. Wri t ing z/(1 - x) - ~-~q2-1 J - 2 . , j = l  x we see t ha t  H i _ l ( z i - l x  j) is the 

pa r t  of (1 - x) i(q2-1) - 1 tha t  has exponent  - j m o d  (q2 _ 1) (for 1 _< j <_ q2 _ 1). 

S ince /P ' - -b  j+q2-1  for b e G F ( q  2) it follows tha t  

bE~ j = l  

Lemma 5.2. 
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Proof .  Since i:~]----0 m o d  p we may  write ~ri(q+l)= ~be:$ ((1-bx) i(q2.1)- 1) and 

the  resul t  now follows by using the ident i ty  above and the expansion (2) of ~rq+l. | 

L e m m a  5.3. 

Hi_i (zi-lxq2-l+nj)=xi(q2-l)+nJ f o r  0 <  i <:?z. 

Proofi 

Hi_t (zi-lxa) = 
i--1 

m=O \ m i - 1  

For a = q 2 _  t + nj the  second binomial  coefficient equals (i-l-m-l~ and only the  i -1  ] 
t e r m  with  m = i -  1 gives a non-zero contr ibut ion.  | 

Subs t i tu t ing  again 1 -  x for x, yields 

Hi-t ( z i - 1 ( 1  - x) q=-l+~j) : (1 - x) i(q2-1)+nj. 

In the same  way as before this gives 

L e m m a  5.4. 

~ri(q+l)+n = Hi-l (zi-l~rq+l+n) . 

For the  special case i = 1 this does not give anything.  This  case is set t led by 

Lemma 5.5. 
^! 

~'q+l+n = Z~n. 

Proof .  L e m m a  2.1 says tha t  z divides 7rq+l+ n and modulo  x q2 

~-~ ) -  1 (n (q -  1 ) -  1 
~rq+l+n - xo'~ = + \ k - 1 ( - 1 ) % k x k '  

k=l  

but (n(qk-1))Trk:Oforallk(5). | 
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6. P r o o f  of  t h e  t h e o r e m  

Let z and H k be as before. Note for k < q  2 and k<<_m that  Hk(z~)  = (te) z r n  m - k  

We will be interested in expressions modulo z 2. In that  case H k (z 1~ f )  =_ f + k z f f  mod 

z 2 and if f is divisible b y z ,  then Hk (zk f )==_(k+l ) f  mod z 2. 

Consider the Newton identity 2V(lY31 + n - 1 )  (note that ~121+n-1-=0), 

nq-q+2n-  1 

E j - - l ^  ^ ( - 1 )  7rj~(,~_l)(q+l)+n_ j -- 0 
j= l  

Multiplying this equation by ~n and considering the terms modulo z 2, the divis- 
ibility relations in Lemma 2.1, together with the fact that  #an-1 ~ 0 for a <_ q - q / n  
imply 

^ 2 ^  
O-nTr(n_i)(q+l)+n -- O'nTr(n_l)(q+l ) --= 0 (mod z2). 

Using the results of the previous section it follows that  ~(n-Z)(q+l) = #q+l + 

(n-2)z~rtq+l rood z 2 and <(n-1)(q+i)+n = ( n -  1)z&/n mod z 2. Since n = 0 mod p, 

^ /  ^ ^ ^ 2  ^ /  ^ 2  --ZCrnCrn -- rCq+lCr n -t- 2ZZrq+1(7 n =-- 0 (rood z2). 

The first two terms cancel since z~/n = -~q+ l ( rn  (7). The third term can be reduced 
using the same expression and its derivative 

^ /  ^ ^ 

7Cq+lan = -Trq+lJn - crn ^' (mod z) 

to give 2ZJn4n mod z 2. Therefore 

= 0 (rood z). 

Since the degree of &n is at most n ( q - 1 )  it follows that  (~2)'-=0. 

Now ~ n = B Q ,  and Q is a p-th power, so ( /32 ) ' -0 .  Hence B 2 is a p-th power. 
For p g; 2 this implies that B is a p-th power which is a contradiction, since B has 
qn - q + n distinct linear factors. 
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