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For ¢ an odd prime power, and 1 <n <g, the Desarguesian plane PG(2,g) does not contain
an (ng—g+n,n)-arc.

1. Introduction

A (k,n)—arc in a projective plane is a set of k£ points, at most n on every line.
If the order of the plane is g, then k<14 (¢+1)(n—1)=gn—g-+n with equality if
and only if every line intersects the arc in 0 or n points. Arcs realizing the upper
bound are called mazimal arcs. Equality in the bound implies that n|q or n=¢+1.
If 1 <n <gq, then the maximal arc is called non-trivial. The only known examples
of non-trivial maximal arcs in Desarguesian projective planes, are the hyperovals
(n=2), and, for n>2 the Denniston arcs {2] and an infinite family constructed by

Thas [5, 7]. These exist for all pairs (n,q) = (2%,2%), 0 < a <b. It is conjectured
in [6] that for odd ¢ maximal arcs do not exist. In that paper this was proved for

(n,q) = (3,3"). The special case (n,q) = (3,9) was settled earlier by Cossu [1]. In
a recent paper on sets of type (m,n) [3] this conjecture is labeled “most wanted”
research problem. In this note we shall show that the conjecture is true in general.

We shall consider point sets in the affine plane AG(2,q) instead of PG(2,q).
This is no restriction; there is always a line disjoint from a non-trivial maximal arc.

The points of AG(2,¢) can be identified with the elements of GF (qz) in a suitable
way, so that in fact all point sets can be considered as subsets of this field. Note
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that three points a, b, ¢ are collinear, precisely when (a —b)9~1 :_"'(a ~c)@* If the
direction of the line joining a and b is identified with the number (a —b)971, then
a one-to-one correspondence between the ¢+ 1 directions (or parallel classes) and
thedifferent (g+ 1)-st.roots of.unity in GF{(g?) is obtained.

We finish this intreduction with a short discussion on Lucas’ theorem and
Hasse derivatives.

Lucas’ theorem gives the value of binomial coeflficients modulo a prime: Let
a=ap+a1p+asp’+... and b=bg +b1p+ bop® +... be the p-ary expansion of the
nnmbers a and b, where b i5 a non-negative integer. Then

()= @EIE) - wen

This can be proved by expanding (14 z)® and using (14+x)"=1+2z" whenever 7 is
a power of the characteristic p (cf. [4], Section 5).
In particular we have the following,

=1
(‘1)1(7«. >=1 (mod p) for r=p%0<i<r,
¥

and, more generally

(——l)i(r_j,_1>=(24,—j> (mod p) for r=p%0<ij<r

2 2

Hasse derivatives cope with the problem that over a field of characteristic p
the p-th and higher ordinary, derivatives of a polynomial vanish identically. The
k-th Hasse derivative Hy, (.\j\’it,h respect to the variable ) is a linear operator on
polynomials defined by Hyg{x™)= (z)m”‘k if £<n, and 0 otherwise. If f and g are
two polynomials then

Half9) =Y Hi()Hn k(9)-
k=0

From this it can be seen that (z—a)*] f if and only if H;(f){a)=0for:=0,1,...,k—1.

2. Some useful polynomials

Let_'.% be a non-trivial (ng— ¢ +n,n)-arc in AG'(Z,q) ~ G’F(q2)’ qg=p". For
simplicity we assume 0 ¢ B. Let B[-1 = {1/b|b € B}. Define B(z) to be the
polynomial

e .
B(z):=[J(1-bz) =) (~1)Foya®

beRB ' k=0



MAXIMAL ARCS IN DESARGUESIAN PLANES OF ODD ORDER DO NOT EXIST 33

where o, denotes the k-th elementary symmetric function of the set B, in particular
0, =0 for k>|B|. Define the polynomials F' in two variables and & in one variable
by
[o¢]
F(to) = [[(1— 1 —b2)17l) = > (=1)k6tk

beRB k=0
where ) is the k-th elementary symmetric function of the set of polynomials -
{(1—bz)9~1 | b € B}, a polynomial of degree at most k(g —1) in z. Again, &y
is the zero polynomial for k>|®|. For zge GF(¢2)\ B[~ it follows that F(t,zg) is
an n-th power. Indeed, if zg=0 this is clear, and if zo#0 then 1/zg is a point not
contained in the arc, so that every line through 1/x¢ contains a number of points

of B that is either 0 or n. In the multiset {(1/zo—b)771|b € B}, every element
occurs therefore with multiplicity n, so that in F'(t,2) every factor occurs exactly
7 times.

For zg € B=1 we get that F(t,z0) = (1 —t9t1)"~ 1 for in this case every line
passing through the point 1/zg contains exactly n— 1 other points of B, so that

the multiset {(1/z0—b)9"1} consists of every (g+1)-st root of unity repeated n—1
times, together with the element 0. This gives

F(t,m0) = [ (1— (1/zo - )42 ™t) = (1 — 2 Thet el (1 ety
beR .

From the shape of F in both cases it can be seen that for all zg € GF(¢?),

61(zo) =0, 0 <k < n, and since the degree of &4 is at most k(g — 1) < ¢2, these
functions are in fact identically zero. The first coeflicient of F that is not necessarily
identically zero therefore is &,.

The main idea of the non-existence proof is to show that &,% is a p-th power.

Together with the fact that B divides &5, and the observation that &, is not
identically zero, this leads swiftly to a contradiction for p#2.

Since 6n,(0)= (W) ("979%™ =1, by Lucas’ theorem, it is not identically zero.
On the other hand the coefficient of ¢ in (1—t971)*~1 is zero, so &y (zg) =0 for

0 eﬂ["l], in other words, B divides &,,. Let Q=6n/B. Then @.is a polynomial
of degree at most n{g—1) —ng+q—n=qg-2n.

Define the power sums corresponding to o and &y:

k(g~

(1) ﬂk:Zbk and ﬁkzz:(l—ba: k(g-1) Z ( q_1)>7rzazZ

beR bed =0

For future use we collect the relevant divisibility relations.
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Lemma 2.1. The following polynomials are divisible by x —z7;
1. 6, unlessnlk or (g+1)|k;
2. 6n0y, unless n|k;
3. #g, unless (g+1)k;
4, 7y, for all k.

Proof. Unless n|k or (g+1)|k, &} vanishes for all € GF(g?), so it follows that
in these cases (r— xqz) |6%. If ntk then &y, still vanishes for zg € GF(¢2)\ B4,
and since B|6p we get the divisibility relation (z — :1:‘12) |6n61 in this case. For
zo € GF(g%)\BI~1 it follows that 7y (zg) =0, because every value is assumed 0 or
n times, and p|n. If (g+1)1k and zoe Bl it follows that

ip(zo) =0+ | > & |m-1)=0.

ggatl=1

Hence (m—xqz) |7 unless (g+1)|k and (m—qu)l&nﬁ'k if (¢+1) |k since B|én. 1
3. The Newton Identities and some consequences

The power sums 7 and the symmetric functions o are related by the Newton
identities N(k) :
k-1 '
kop + Y _ (-1 oyme; =0,
=0

for all £>0. These identities can be obtained by computing the derivative of B(z)
to get

1—
bed

o0
Z(—l)kkakxk—l
k=1

and comparing the coefficient of z¥ (resp. t*) after substituting (1 —bz)~! =
The Newton identities N (k):

Koy + 3 (-1 oy =0,
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can be derived in a similar way, by computing the partial derivative with respect
to t of F(t,z).

For all k < ¢ the degrees of &3, and 7 are less than ¢% so in view of the
divisibility relations 7y, is identically zero for £ <g¢, and so is &3, unless n|k. By

considering the Newton Identity N(g+1) we find that

2_1
{2) Ggt+l = —Tg41 = — Z ij],
j=0
by (1). Note that since mo=0 and mj g2_; =my, for all k>0, we get that

) o0
R 2
g+1 = (z — a7 )Z Wk+1$k-
k=0

Differentiating F(t,z) with respect to z it follows that
- 8]
_ E: —b(1 — bz)? %t }: kat ik
(3) Fm(t, iL') = m F(t,l‘) = (——1) O’kt .

beR k=0

The éxpression in front of F(t,z) may be expanded in a formal power series so that

Folt,z)= |- f: b(1 — bx) 21 | F(t, x).

beB i=1

Expanding the bracket using the Binomial theorem gives

oo |ig—i—1 o —i—1 »
{4) Fx(t,ﬁ':):—z Z (—l)k(q k )W}c+1$k £ F(t,z). v

i=1 | k=0

We already observed that #(¢,z) as a function of ¢ is an n-th power modulo ¢4, and
the same is of course true for Fy(t,z). It follows that the same is again true for

0 . - .
=3 b1 - by
beB i=1
This gives (mqk__";_l)wk =0 for 0<m<gq, n{m and all k. Note that from %, =0
for m < ¢ it follows that

(5) (mqk— m) 7, =0 for m <gq and all' k.
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From (mqk_ ™= (mar _1) + (mqk__frihl) follows the important equality

©

mg—m-—1
k

>7Tk=0 for 0<m<ygq, ntm andall k.

Equating the coefficient of ¢ in (4) implies

N ._ng—-n—.l gfrg—n-—1 k
On = Z (1) k Th+1Z -

k=0

From 71 = 4=l n 23 =0 it follows that m; =0 for j < g. This then implies
j=0"7 J

that &y is a p-th power mod z9. By considering the Newton identities relating the
oy’s and the mp’s it follows that o; =0 for j < ¢ unless p|j and hence B is a p-th
power mod 9, Therefore their quotient @ which has degree at most ¢—2n is a p-th
power, i.e. Q' =0.

From the proof of the Newton identities it follows that

2 ~
B'(z — %) = —Bfgi1.

Multiplying each side by @ and writing B'Q=(BQ)’ =4, this is seen to imply the
important identity

~ 2 ~ ~
@ Sl — a8y = —nigi.

Our main conclusion, namely that &?L is a p-th power will follow from consider-

ing the Newton identity N(ng—q+2n—1) modulo (z ——xq2)2. As it will turn out
the only relevant #-s involved in this identity will be the 7y, with k=—1 mod n and
most of these vanish identically. We start by showing that #4y,—1 =0 for a <g—q/n,
and then 7,11y and %4 1)4p Will be calculated in terms of Hasse derivatives for

¢ <n. In this way in particular f(;,_1)(g41) and f(n_1)(g41)4n are obtained (the

last two fgn—1's).

4. Proof that #,,_1=0 for a<g—gq/n

Recall that, by definition

(an=D)a=1) 0 —an 11 S
Tan—1 = Z(l - bx)(q—l)(an—l) = Z ( -4 . )(—1)]71'j$]

beB 7=0
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From this expansion, and Lucas’ theorem, note that the only exponents j that occur
on the left hand side are those with =0,1 mod'n. Therefore

an—1 = xGBL + GT,
where Gg and G are polynomlals of degree at most ag—q/n—a. We proceed to show

that in fact gn_q=(z— e )G" Recall that Lemma 2.1 implies 7 Fap—1 is divisible

by x—z9". Tndeed, if it is not, then (q—l—l)]an 1, but this implies a >g+1~ q/n
Hence

z— a7 |Gy + G?
We now use a trick essentially due to Rédei ([4], Section 33) , and raise the
right hand side to the ¢° /n-th power, then simplify. using the divisibility relation
. 2 ‘ :
z—z7 |G? —G; to obtain

z — :L'qz [qu/nGQ + G

The polynomials G and G both have degree at most ag—q/n—a < q2—q2/n—q/n¥
q-+q/n so the right hand side has degree less than g2 and therefore is identically
zero, So G1= _qu/nGO and we have proved that

R 2
Tan—1 ='(CC —z4 )GBL

One may check, directly from the definition, that

( ag—q/n—a agn —q —an+ 1 1/n y

— in -nj
g=n

Note that le-ﬁ'n ='n; and (aqn_‘;.;‘m"“l) = (ag;‘i/“'h) We.now proceed to show
that in fact G3 =0. In other words, we want to show that tor all j, (aq‘qj/?_a)i#O
implies that m; =0.

Define the (cyclic) shift operator s on k with 0<k<g®—1by s(¢>—1)=¢>*—1
and s(k) = pk mod ¢% — 1 otherwise. So what s does is cycle the p-ary digits of

k. Then it follows immediately from Lucas’ theorem that (u) = (SEUQ, {for

v s{v
0<wu,v<q?). Moreover we have Ty(u) =Ty and so =0 if and only if To(u)=0. It
follows that it is sufficient to prove that

(e i),
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for all k(= se'hj). Here e and h come from g =p" and n=p®, and the effect of

s¢~P is essentially dividing by ¢/n modulo q®—1. If we write g—a = algq/n) + 8,
with 0< < g/n, then 0 <a(<n), since ¢ <g—gq/n. Using this we get

se‘h(aq;q/n——a)=(a—1)n+0z——1+,8qn=mq~m—1,

where m = fn+n — . In particular m < ¢ and m # 0 mod n, so that the desired
equality is exactly equation (6) from the previous section.

5. Calculation of 7;, 1) and #;(g4 1), for i<n

Recall that Hy, stands for the k-th Hasse derivative with respect to . We will
write z=xz—xz9 . Note that by the chain rule Hy(f(1-2z))=(—1)*Hy(f){(1—2).

Lemma 5.1.
i
H;_ (Z_) =1-20"Y forisg
T
Proof.
4
Hi 4 (—) Hiy Z( 1)’ ( )3”] A
_Z( 1y i@ -1)+i-1 R ICEESY
: 1—1 '
But if 0<j<i<g2, then (€' ;D=1 = (=371 =g, i

Substituting 1 —x for ¢ changes z into —z and gives us H; 1 (z’/(l——m)) =

(l—x)i(qz_l)wl. Writing z/{(1—z) = ;1 11:03 we see that H;_;(z*"'¢7) is the

part of (1 —x)i(qzhl) —1 that has exponent = j mod (g2 —1) (for 1 <j<¢q®>—1).
Since b/ =bi+2°~1 for be GF(g?) it follows that

2
Z ((1 — b)) 1) = ‘Zl i H; q (zi_lazj) .

beR

Lemma 5.2.

i—1 2

ﬁ'i(q—{—l) = Hi-—l (Z 7Tq+1) .
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Proof. Since |B| =0 mod p we may write ;(q,1)=3 pc3 ( (1—bz)i(d*-1) — 1) and

the result now follows by using the identity above and the expansion (2) of #g41. 1

Lemma 5.3.

; 2_ : a2 __ . .
H;_4 (z1 L1od 1+”J) =24V g 0 < i<

Proof.

H,_, (zi—lma) Z( 1) ( ) (m(q - 1;)_4'12 -1+ a) g 1)+a.

For a=q? —1+4nj the second binomial coefficient equals (i”li"_q‘_l) and only the
term with m=1—1 gives a non-zero contribution. 1

Substituting again 1 -z for z, yields
H; (zi_l(l - x)q2"1+”j> =(1- :E)i(qz—l)—l—nj.
In the same way as before this gives
Lemma 5.4.
. e i1 -
Ti(g+1)+n = Hi—1 (Z 7Tq+1+n) .
For the special case i=1 this does not give anything. This case is settled by

Lemma 5.5.

« ~
Tg+14n = 20y

Proof. Lemma 2.1 says that 2z divides #4414p and modulo 29

foiten 20l = qu [(n(q —k1) - 1) N (n(qk— ~1)1 - 1)} C1)fmpat,

k=1

but (”“’;”) 7 =0 for all k (5). [
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6. Proof of the theorem

Let z and Hj, be as before. Note for k< ¢* and k<m that Hy,(z™)= (7)2""%.
We will be interested in expressions modulo z%. In that case Hy, (zkf) = f+kzf' mod
22 and if f is divisible by z, then Hy(2*f)=(k+1)f mod 22.

Consider the Newton identity N(|B|+n—1) (note that 8\B|+n—1=0),

ng—q+2n—1

Y. W TRy garyn =0
=1

Multiplying this equation by &5, and considering the terms modulo z2, the divis-
ibility relations in Lemma 2.1, together with the fact that g1 =0 for a<g—q/n

imply
S ~2 A — 2
Unﬂ-(n—l)(q—l—l)—f—n b Unﬂ-(n—l)(qci—l) =0 (mod z )
Using the results of the previous section it follows that #(, 1yg11) = fg+1 -+

(n—2)emy 4 mod 22 and F(n—1)(g+1)+n = (n—1)z8;, mod 22, Since n=0 mod p,

— 2606, — Tgr162 + szr:ﬁl&% =0 (mod z?).

The first two terms cancel since 267, = —# 416y (7). The third term can be reduced
using the same expression and its derivative 2

< Y.
Tg410n = —Tig416y, — 6 (mod 2)

to give 22676y, mod z2. Therefore
2 7
(&n> =0 (mod z).

Since the degree of &y, is at most n(q—1) it follows that (&%)/EO.

Now 65, =BQ, and @ is a p-th power, so (B2)/EO. Hence B? is a p-th power.
For p##2 this implies that B is a p-th power which is a contradiction, since B has
gn —q+n distinct linear factors.

Acknowledgement. The authors wish to thank Andries Brouwer for carefully read-
ing the manuscript and simplifying parts of the proof.



MAXIMAL ARCS IN DESARGUESIAN PLANES OF ODD ORDER DO NOT EXIST 41

References

1] A. Cossu: Su alcune proprieta dei {k;n}-archi di un piano proiettivo sopra un corpo
finito, Rend. Mat. e Appl., 20 (1961), 271-277.
2] R. H. F. DENNISTON: Some maximal arcs in finite projective planes, J. Combin.
Theory, 6 (1969), 317-319.
[3] T. PENTTILA AND G. F. ROYLE: Sets of Type (m,n) in the Affine and Projective
Planes of Order Nine, Designs, Codes and Cryptography, 6 (1995), 229-245.
[4] L. REDEI: Liickenhafte Polynome iiber endlichen Kérpern, Birkhiuser Verlag, Basel
(1970) (English translation: Lacunary polynomials over finite fields, North Hol-
land, Amsterdam, 1973).
8} J. A. THAS: Construction of maximal arcs and partial geometries, Geom. Dedicata,
3 (1974), 61-64.
6] J. A. THAS: Some results concerning {(g+1)(rn—1);n}—arcs and {(g+1)(n—1)+
1;n}—arcs in finite projective planes of order g, J. Combin. Theory Ser. 4, 19
(1975), 228-232.
{71 J. A. THAS: Construction of maximal arcs and dual ovals in translation planes,
Burop. J. Combinatorics, 1 (1980), 189-192.
Simeon Ball Aart Blokhuis
Techn. University Eindhoven, Techn. University Eindhoven,
P.O. Boz 513, 5600 MB Eindhoven, P.O. Boz 513, 5600 MB Eindhoven,
The Netherlands The Netherlands
simeon@win.tue.nl aartb@Qwin.tue.nl

Francesco Mazzocca

Seconda Universita degli Studi di Napols,

Piazza Duomo, ¢/o Curia Vescovile,
81100 Caserta, Italy

mazzocca@napoli.infn.it



