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ABSTRACT. We consider the following question: Given a family d of sets for which d-b lock ing  
sets exist, is it true that any bijection of the set of points which preserves the family of d -  
blocking sets must preserve d ?  Using a variety of techniques, we show that the answer is 'yes' 
in many cases, for example, when d is the family of subspaces of fixed dimension in a 
projective space, lines in an affine plane, or blocks of a symmetric design, but that  it is 'no '  for 
lines of an arbitrary linear space. 

1. INTRODUCTION 

Let d be a family of subsets of the finite set X. A subset S of X hits d if 
S ~ A :# (D for all A • d ;  it blocksd if, in addition, S contains no member of d ;  
that is, S and X N S  both hit d .  We let H(d), B(d) denote the collections 

of all sets which hit d ,  resp. block d .  For any family d ,  let d,ni,  denote the 
set of all elements of ~ which are minimal with respect to inclusion, and 
let h (d)  = H(d)mi,,  b ( d )  = B(d).~in. Finally, Aut ( d )  denotes the group 

{g ~ Sym(X) Ig(A) ~ d for all A ~ d }  

of bijections (permutations) of X, where Sym(X) is the symmetric group on 
X. 

We consider the following general problem, raised by Mazzocca [6]: For 
which families d is it true that Aut(B(~)  = Aut(~D? 

We note that, for any family d ,  we have H ( d ) =  H(dmi,) and 

B(d~)  = B(~rn in ) ,  moreover, Aut(dmin) >1 Aut(d). So our problem may have 
a negative answer if d ~ dmi,, and we consider only the case when 
d = dm~n, which holds if and only if d is a clutter. (A clutter, otherwise 
known as a Sperner family or antichain, is a family d of subsets of X with 
the property that, for all A I, A2•,S~/ '  A I ¢ A2.  ) 

We have the following inclusion. 

LEMMA 1.1. Aut(H(d)) = Aut(h(d)) --< Aut(B(d)) = Aut(b(d)). 
Proof. To show the equalities, we must show that each family determines 

the other. We have h(d) = H ( ~ r n i n  and 

H(d)  = {A c_ X IJAI ~ h(d) with A 1 _ A}; 

also b ( ~  = B(J)mi n and 

B(s~ ¢)= {A ~ Xl3A~, A 2 e b ( d )  with A~ c A, A 2 n A  = /Q}. 
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Also, we may substitute h(~¢) for b(~/) in the last equality to show that 
Aut(h(~Q¢)) ~< Aut(b(~¢)). 

In Section 2, we apply a result of Edmonds and Fulkerson to show that 
Aut(H(,~t)) = Aut(~¢) for any clutter ~¢, and to obtain some sufficient 
conditions for Aut(B(,~t))= Aut(,~¢). We pursue these ideas further in 
Section 3 to show that, in the case where s¢ is the set of lines in a projective 
or affine plane, then elements of ~¢ are the sets of smallest cardinality in 
h(b(sl)), so that Aut(B(~t))= Aut(J) ,  In section 4, we establish the same 
conclusion on the assumption that Aut(s~¢) is a maximal subgroup of 
Sym(X) or Alt(X) and B(~¢) ¢ O; this includes projective spaces, and affine 
spaces over prime fields, whose dimension is not too large. For affine spaces 
over arbitrary fields, we construct in Section 5 some line-blocking sets 
which permit the same conclusion to be drawn. The final section describes a 
family of linear spaces d for which Aut(B(~/)) ¢ Aut(~¢). 

2. BLOCKING SETS AND HITTING SETS 

Edmonds and Fulkerson [3] established the following result. For 
completeness, we include the proof. 

PROPOSITION 2.1 For any clutter ~ ,  the following hold: 

(i) h (~t) is a clutter; 

(ii) h(h(~l)) = sst; 
(iii) For any A ~ s~t and any a ~ A, there exists B ~ h(~J) with A c~ B = {a}. 

Proof. (i) is clear; we turn next to (iii). Given a ~ A  ~ J ,  let B' ~h(~/'), 
where ~¢' is the family 

{ A ' \ A I A '  E ~ ,  aCA'};  

then B = {a} ~ B' is the required set. 
Now, for any A ~ ,  clearly A ~H(h(,~/)); by (iii), for any a EA, 

A \  {a} ¢ H(h(,~l)), so A E H(h(,~l))min = h(h(,~). Suppose that S ~ h(h(,~O) but 
S ¢ ~ .  Then S contains no member of ~¢; so the complement of S is in 
H(~), and so there is a set in h(,.Q¢) disjoint from S, contrary to assumption. 
So h(h(,~¢)) = ~ ,  as required. 

COROLLARY 2.2. Aut(H(~)) = Aut(h(~/)) = Aut(~¢)for any clutter J .  

Thus the analogue of our question for hitting sets is trivial. Also, from the 
corollary, we can deduce a sufficient condition: 

PROPOSITION 2.3. Let ~ be a clutter in which no two sets meet in 
precisely one point. Then b(..~) = h(~), and so Aut(B(~¢)) = Aut(~¢). 
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Proof Clearly b(s~/)= h(,ff)c~ B(s~/)_ h(,.q/). Assume that S e h(s~/) but 
S ¢ b(s¢). Then S contains a member A of sO. For any a e A, there is a set 
A' e ~¢ with A' c~ S = {a} (since, if not, then S \  {a} e H(sg), contradicting 
the minimality of S). Then A c~ A' = {a}, contrary to assumption. 

This result shows that Aut(B(a¢))= Aut(s~¢) for many families ,.if; for 
example, the family of h-spaces in projective or affine n-space over GF(q) 
with h > ½n; symmetric designs other than projective planes (or, more 
generally, semisymmetric designs other than semiplanes), etc. 

3. PROJECTIVE AND AFFINE PLANES 

In contrast to Proposition to Proposition 2.1, it is not generally true that 
either b(b(ssO) = ~¢ or h(b(s¢)) = ~¢. However, we might study these families 
in the hope of recognizing ~¢ from them. We have the following general 
result: 

PROPOSITION 3.1. (i) Let ssl be any clutter. I f  S ~ h(b(s~)) then either 
S ~ s$ ¢ or there exists A ~ s~l with A c~ S = O. Hence h(b(s¢)) c_ ~ w b(b(s~l)). 

(ii) Let ,ff be any clutter with the property that, for all A ~ s~ and all ae A, 
there exists B eB(s~I) with A c~B= {a}. Then ,~l c h(b(sg)). Hence 

h(b(s¢)) = s¢ w b(b(s¢)). 

Proof (i) Suppose that S ~ h(b(s~f)) and there is no set A e s~/ with 
S c~ A = (2). Then S hits ,~, and so S hits every member of h(,,~¢) which 
contains a member of s~¢; that is, every element of h(zz/)\ b(s¢). But also S 
hits b(,~l) by assumption; so S hits h(,,~l). Clearly S ~ H(h(s~l))~, = h(h(~/)); so 
S e ~ ,  by Proposition 2.1. Thus, if S ~ h(b(~f)) and S ~ J ,  then S contains 
no sO-blocking set, and S ~ b(b(s~t)). 

(ii) Clearly ~ _~ H(b(s~l)) with this assumption. As in Proposition 2.3, the 
hypothesis ensures that s¢ _c H(b(sC))mi n = h(b(sJ)). The final equality fol- 
lows from this inclusion, (i), and the obvious b(b(s¢O) ~_ h(b(s~)). 

PROPOSITION 3.2. Let ~ be the set of lines of a projective plane of order 
n > 2, or of an affine plane of order n > 3. Then ,~ is the set of elements of 
h(b(~ff)) of least cardinality; so Aut(B(s~/)) = Aut(s~/). 

Proof. The argument is similar for projective and affine planes. First, let 
~1 be a projective plane of order n > 2. Let L and M be lines; choose 
x ~ L \  M, y e  M X L ,  and z ~ N \  {x,y}, where N is the line xy. Then 
(L\{x})  u ( M \  {z} hits every line, and contains at most three points of any 
line except L or M; so it is a blocking set (clearly minimal). Since any line 
can play the role of N in this construction, the hypotheses of Proposition 
3.1(ii) are satisfied, and J = h(b(sJ)). 
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Now take S • h(b(s~t)), S ¢ ,.~. By Proposition 3.1(i), there is a line L of s# 

disjoint from S. 
CASE 1: There is a line M ~ L with IS ~ MI ~< 1. Let y be a point of M 

such that S c~ M c_ {y}. For  any z ¢ L u  M, let x be the intersection of L with 

N = y z .  Then, as above, ( L N { x } ) u ( M N { y } ) u { z }  is in b(~¢); since S 

contains no point of LN{x} or MX{y},  we must have z • S .  Thus 

[SI > / n ( n -  1). 
CASE 2: S contains at least two points of each line M ~ L. Choosing a 

point xC L  u S, each of the n + 1 lines through x contains at least two 

points of S, and so ISI >/2(n + 1). 
In either case the result follows. 
Now let ~¢ be an affine plane of order n > 3. We construct a blocking set 

as follows. Let L and M be parallel lines; choose x • L, y • M, and let N be 
the line xy. Then B = L w M ~ N \ { x , y }  is a blocking set. For  any line T 
parallel to L but different from L and M, I T ~  BI = 1. Since T may be any 

line of the plane the hypotheses of Proposition 3.1 hold. 
Again, take S • h(b(,.~¢)) with S ¢ ~¢, and let L be a line disjoint from S. 

CASE 1: There is a line M parallel to L with IM n SI ~< 1. Take y • M 
with M n S ___ {y}. Using the blocking set previously constructed, we see 

that each of the n lines through y other than M contains another point of S. 
So ISI >~n. If y • S ,  then ISI >~n + 1; so suppose that M n S  = Q. Now S 

is not a line parallel to M, so there exist two points of S lying on a line N 

which meets M. Repeating the argument with y = M ~ N~ we see that 

ISI >/n + 1 in this case also. 
CASE 2: S contains at least two points of each line parallel to L. Then 

ISl >/2(n - 1). 

REMARK 1. The conditions on n are necessary; none of the three excluded 

planes has any blocking sets. 

REMARK 2. Our first proof of the final assertion of Proposition 3.2 
(obtained by F.M.) used a different argument, it was shown, by a fairly 
lengthy case analysis, that projective planes of order n > 2 and affine planes 
of order n > 3 share the following property: 

(~) Any set S of  points, whose cardinality is equal to that of  a line but 
which is not a line, is contained in a blocking set. 

Clearly any family ,~¢ of sets of constant cardinality k which satisfies (~) 
has the further property that Aut(B(s¢)) = Aut(~t), since sa t is characterized 
as the family of k-sets contained in no member of B(,~d). 
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PROBLEM.  For which n and q does the family of lines in PG(n, q) (or 
AG(n, q)) have property (~)? 

REMARK 3. Let ~¢ be a projective plane of order n > 2. Then, for any two 
lines L, M ~ ~ ,  the complement of L u M is in h(b(,~)). (No blocking set is 
contained in L u M ;  but, for any z C L u M ,  the blocking set used in 
Proposition 3.2 is contained in L u  M {z}.) This set falls under Case 1, and 
has cardinality n(n - 1). For n = 3, every element of h(b(~t))\ ~ has this 
form. In general, however, there are others: for example, if n = 4, the 
complement of O w L is such a set, where O is a 6-arc and L an exterior line. 
This set falls under Case 2, and has cardinality 10 = 2(n + 1). The lower 
bound for the cardinality of sets in h(b(~¢))\~ can be improved to 
approximately n 3/2 by a more careful argument. 

4.  PROJECTIVE AND AFFINE SPACES 

For n > h > 0 and q a prime power, we let PGh(n,q) and AGh(n,q) denote 
the families of h-spaces in PG(n, q) and AG(n, q) respectively. In this section, 
we show that Aut(B(~C))--Aut(~ ¢) holds if ~=PGh(n ,q)  or if 

= AGh(n,q) and q is prime, provided that B(~¢)~ Q. Our tools are 
theorems of Kantor and McDonough and of Mortimer asserting the 
maximality of Aut(~ ¢) in the symmetric or alternating group: if Aut(B(~)) 
were larger, it would be symmetric or alternating. So first we determine 
those clutters ~¢ for which B(~¢)~: Q and Aut(B(~¢)) is symmetric or 
alternating. 

Note that Ramsey's theorem for finite projective and affine spaces implies 
that, given h and q, blocking sets for PGh(n, q) or AGh(n , q) exist for only 
finitely many values of n (Mazzocca and Tallini [7]). 

W e l e t ( k )  d e n o t e t h e f a m i l y o f a l l k - e l e m e n t  s u b s e t s o f t h e s e t  X. 

P R O P O S I T I O N  4.1. Let ~ be a clutter on X, with ISl = n. 

(i) The following are equivalent: 

(a) forsomek ~< n, ( k ) _ ~  B(.~¢ ). 

(b) for all ,4 ~ ~ ,  [A ] >~ in + 1. 
(ii) The following are equivalent: ( X )  

(a) B ( J )  :/: Q and, for every k ~< n, either ~_ B(d)  or 
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(b) for some l >~½n+ 1,~¢ = ( X ) .  

f x-"k 
Proof. ( i ) I f  (b)holds ,  then t k ) - - - - B ( ~ ¢ ) f o r  the unique k satisfying 

i n < k < in + 1. Conversely, suppose thaf (a) holds. Then, for any A e ~¢, 
we have I AI > k  + 1 (otherwise A is contained in a k-set) and 
l a[ > n - k + 1 (otherwise A is disjoint from a k-set). So 2 I h I > n + 2. 

(if) Clearly (b) implies (a). Suppose that (a) holds. By (i), every set A ~ 
has I h I > in  + 1. Hence an element B ~ h(~t) satisfies I BI < i n + 1, and so 
B cannot contain an element of ~ ;  that is, b(~¢) = h(d).  Moreover, b(~¢) is 

the set of elements of minimal cardinality in B(~) ,  that is, b(s4) = ( ~ ( )  for 
, ' ~ T \  

k. Then ~=h(h(sgt))=tl),where l = n - k +  1. some 

COROLLARY 4.2. l f  ,~t is a clutter on X such that B(~I) # Q and Aut(~¢) is 

a maximal proper subgroup of Sym(X) or Alt(X), then Aut (B(~¢)) = Aut (..q0. 
Proof. If not, then Aut(B(,~t))=Sym(X) or AIt(X); but then 

Aut(~ ¢) = Sym(X), since condition (a) of Proposition 4.1(if) holds. 

P R O P O S I T I O N  4.3. Suppose that n > h > 0 and q is a prime power; let 

= PGh(n, q). If B(s¢) # Q, then Aut(B(~¢)) = Aut(,.~¢). 
Proof. We have Aut(,.~¢) = PFL(n + 1, q); the maximality of this group in 

the symmetric or alternating group was shown by Kantor and McDonough 
[5]. 

REMARK. Unlike our earlier results, this proof is non-constructive; it gives 
no indication of how to reconstruct ~ from B(s¢). It is possible that, when n 
is close to the Ramsey number (beyond which blocking sets fail to exist), the 
procedure for reconstructing ~¢ from B(,.~) becomes arbitrarily complicated. 

Mortimer [81 showed that the only groups of permutations properly 
containing the affine group AFL(n,q), other than the symmetric and 
alternating groups, are affine groups AFL(nk, r), where k and r satisfy r k = q, 

k > 1, under the natural identification of the point sets of AG(n, q) and 
AG(nk, r) given by restricting scalars. Suppose that ~¢ = AGh(n, q) and that 
Aut(B(sJ)) = AFL(nk, r). Then every h-blocking set in AG(n, q) must block 
all images of an h-flat under AFL(nk, r); that is, all hk-flats in AG(nk, r). 
Hence, we have the following result: 

P R O P O S I T I O N  4.4. Suppose that n, q, h are given. Assume that h-blocking 
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sets in AG(n, q) exist and that, whenever q = r k with k > 1, there exists an h- 

blockin9 set in AG(n, q) which is not an hk-blockin# set in AG(nk, r) (with the 
natural identification). Then,/f • = AGh(n, q), we have Aut(B(,~¢)) = Aut(z~¢). 
In particular, this holds if q is prime (and B(,~Q ~ Q). 

In the next section, we construct  some examples  of  l ine-blocking sets for 

which the hypothesis  of  Propos i t ion  4.4 holds. 

5. SOME LINE-BLOCKING SETS IN AFFINE SPACES 

L E M M A .  5.1. Suppose that x >~ 1 and that S is a subset of AG(m,q) with the 
property that, for any line L, I L ~ S I  >~2x and I L \ S I  >~2x. Then there is a 
subset S' of AG(m + 1,q) with the property that, for any line L, ILc~S'I >~x 

and [L XS'p >1 x. 
Proof Let C be a subset of GF(q) with f CI = x. N o w  set 

S ' =  ~ ( x , t ) L x e S , ' t e G F ( q ) \ C ,  or x ~ A G ( m , q ) \ S ,  tEC} .  Let L be any 

line of AG(m + 1, q). There  are three cases: 

(i) The  (m + 1)st coord ina te  of points on L is constant .  Then L is 

conta ined  in a hyperp lane  H = {(x, c) lx e AG(m, q)} and H c~ S' = S 

or H X S  according as c ¢ C  or c ~ C .  Thus  I L c ~ S ' l > ~ 2 x  and 

[ L \  S'[ >~2x. 

(ii) The first m coordinates  of  points on L are constant .  Then,  clearly, 

either [L~S ' ]=ICI  or I L \ S ' I = I C J ,  according as the point  

represented by the first m coordinates  of L is not or is in S. 

(iii) Nei ther  of the above.  Then L = {(x(t),t)lt~GF(q)} where x is a 
function f rom GF(q) to AG(m, q) which is the paramet r ic  form of a 

line L °. Let 

D = {t ~GV(q)  fx( t )6 S}, 

so that  2x ~< pD[ --< q - 2x. Then 

{t ~ GF(q)I (x(t), t) ~ S'} = C ~ O ,  

and x ~< ] C A D i ~< q - x, as required. 

(The case x = 1 of this result has been proved by Tallini [9, XXI].)  

C O R O L L A R Y  5.2. Suppose that there is a subset S of AG(m,q)  with the 
property that,for any line L, IL ~ S] >~ 2 d and [LXS] >~ 2 a. Then there is a line- 
blockin 9 set in AG(m + d, q). 

E X A M P L E  1. If q >~ 2", then there is a l ine-blocking set in AG(n,q). (We 
apply  the corol la ry  with d = n - 1, m = 1; any set of 2"-1 points  in AG(I ,q )  
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satisfies the hypothesis.) No te  that, for n = 2, this example is the symmetric 

difference of two parallel lines and a line f rom a different parallel class, 

which we used in our  earlier discussion of affine planes. 

E X A M P L E  2. Choose  a r a n d o m  subset S of  AG(n, q), by including points 

independently with probabil i ty ½. The probabil i ty that  a given line L is 

contained in or  disjoint f rom S is 1/2 q- 1; so the expected number  of such 
lines is qn-l(q, 1 ) / ( q - 1 ) 2  q-1. If 2 q-1 >q,,-l(q,,_ 1) / (q - l ) ,  then the 

expected number  is less than one, and so, for some choice of S, no  line is 

contained in or  disjoint f rom S; that  is, S is a line-blocking set. 

This example is better than the preceding one for n >/6; it requires q to be 

greater than a function of n which grows a little faster than n log n. 

However,  a further improvement  can be made by combining the methods. 

E X A M P L E  3. Given d, choose a r a n d o m  subset S of AG(n - d, q) as above. 

The probabil i ty that  a line L satisfies ILLS[ < 2 d or  LL\SI < 2 d is 
(2~-l/E2do~(~))-l. Thus  if 

2 q- 1 > q , - n -  l(q,-n _ 1)/(q - 1), 

then there is a choice of S for which no such line exists, and hence (by 

Corol lary  5.2) a line-blocking set in AG(n,q). 

Table  I lists the least integer values of q satisfying the various inequalities 

for different values of n. In  general, Example 3 with d = 2 gives the best 

bound.  

TABLE I 

3 4 5 6 7 8 9 10 

Ex. 1 8 16 32 64 128 256 512 1024 
Ex. 2 18 31 45 61 76 93 110 127 
Ex. 3, d = 1 12 25 38 53 69 85 101 119 
Ex. 3, d = 2 8 21 35 49 65 81 98 115 
Ex. 3, d = 3 - -  16 34 51 68 85 102 120 
Ex. 3, d = 4 - -  - -  32 59 79 99 118 138 

E X A M P L E  4. By r a n d o m  search, we found subsets of affine planes which 

give (using Corol lary  5.2) l ine-blocking sets in the following affine spaces: 

AG(3,7), AG(4,13), AG(5,31), AG(5,29), AG(6,47). For  example, the 
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following subset of AG(2, 7) meets every line in at least two and at most five 
points: (0, 0), (0, 4), (1, 3), (1, 4), (2, 0), (2, 3), (3, 0), (3, 2), (3, 3), (3, 4), (3, 6), 
(4, 1), (4, 3), (4,4), (4,5), (4,6), (5,0), (5,2), (5,3), (5,5), (5,6), (6,0), (6, 1). 

EXAMPLE 5. PG(2,25) contains a family of 21 pairwise disjoint Baer 
subplanes (the orbit of one under a Singer cycle). (See, for example, 
Hirschfeld [4, p. 92].) Let S O be the union of 9 of these subplanes. Then S o 
meets every line in 9 or 14 points. Removing a line at infinity, we find a 
subset S of AG(2, 25) meeting every line in at least 8 and at most 14 points, 
and so (using Corollary 5.2) a line-blocking set in AG(5, 25). 

It is known that no line-blocking set exists in AG(3,q) for q--< 4. (For 
q < 3, there is no blocking set in AG(2,q). For q = 4, the result has been 
proved by Brown [2] and by Tallini [9]. Thus, in three-dimensional affine 
space, only for q = 5 is the existence of line-blocking sets in doubt. 

We saw in Section 4 that, if q is prime, the existence of a line-blocking set 
in AG(n, q) guarantees that Aut(B(s¢)) = Aut(J),  where ~ is the set of lines; 
but, in general, more is required: whenever q = r k, k > 1, we need a line- 
blocking set in AG(n, q) which is not a k-blocking set in AG(nk, r). We note 
first that Example 1 with n = 2 has this property. For the set is 

S = {(x,y)lx = 0 or x = 1 or y = O}N {(0,0), (1,0)~. 

Restricting scalars, we represent AG(2,q) as V•V, where V is a k- 
dimensional space over GF(r). Choose proper subspaces U1, U 2 of V with 

dim U1 + dim U2 = dimV and 1 ~ U1; then select al ¢ U~ and az ¢ U2. 
The set 

W =  {(x 1 --}- a l ,  x 2 + a 2 ) l x  1 E U1, x 2 e U2} 

is an affine k-flat over GF(r) which is disjoint from S. 
Now observe that, in any example constructed using Corollary 5.2 with 

d >/2 (and so, in particular, in Example 3 with d >/2, and in Example 1 
with n >2), there exist planes zt (obtained by holding all but the last two 
coordinates constant) for which 7r c~ S is the blocking set of Example 1 with 
n = 2. So all these examples satisfy the condition of Proposition 4.4 as well. 

In particular, if ag is the set of lines in AG(3,q), we have shown that 
Aut(B(.ff)) = Aut(a¢) for all prime powers q except q < 4 (where B(a¢) = ©) 
and possibly q = 5 (where the question is equivalent to the existence of 
blocking sets). 

REMARK. The argument of Example 2 shows that line-blocking sets in 
PG(n,q) exist whenever 2q> (q,+l _ 1)(q" - 1)/(q - 1)(q 2 - 1). Note also 
that the union of line-blocking sets in AG(n,q) and P G ( n -  1, q) (the 
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hyperplane at infinity) is a line-blocking set in PG(n, q). Furthermore, if line- 
blocking sets exist, then Aut(B(zd)) = Aut(zd), where ~t is the set of lines 
(Proposition 4.3). Similarly, the argument yields h-blocking sets with h > 1. 

For further results and information on blocking sets, we refer the reader to 
[1], [9] and [10]. 

6. LINEAR SPACES 

The simplest clutter ~t for which B(z~) ~ O and Aut(B(~g)) ~ Aut(~g) is the 
family 

~f = {{1,2}, {2,3}, {3,4}}; 

we have B( A) = {{1, 3}, {2,4}}, so IAu t (A) l=2 ,  LAut(B(A))I=8. We 
construct linear spaces by encoding this example. (A linear space is a family 

of subsets of X, called lines, such that any line contains at least two 
points, while any two points lie in a unique line.) 

P R O P O S I T I O N  6.1. There are infinitely many linear spaces ~d for which 
B(d) ~ (7_) and Aut(B(~¢)) ~ Aut(af). 

Proof. Take a linear space (x, af) containing a blocking set B with the 
following properties: 

(i) any line contains at least six points altogether, and at least four 
points outside B; 

(ii) there is a point x2 ~ B lying on at least two tangents L1, L2 to B, and 
a point x4 ~ B lying on a tangent L3 which intersects L z (at a point 
x3, say). 

(A line L is a tangent to B if I L c~ B] = 13 
For example, take (X, at') to be PG(2, q2), q > 2, and let B be a Baer 

subplane. 
Let xl be any point of L1 other than x2. Now let 

x' = (xN(L1 w L  2 w L 3))w {xa, x2,x3,x4},  

and ,~¢' the linear space induced on x' by ~¢; that is, 

,;J' = {LnX' lLE.~g ,  lLc~ g '  I >~2}. 

Now we have: 

(i) The only lines of M" which have just two points are {x~, x 2 }, {x2, x3 } 
and {x3, x4}; for any line L other than L1, L 2 or L 3 contains 
at most three points of Lx w L a w L 3. 



B I J E C T I O N S  W H I C H  P R E S E R V E  B L O C K I N G  S E T S  229 

(ii) B is a blocking set for ~¢'; for clearly B meets each line of sO' but, as 
in (i), any line of ~t' contains a point outside B. 

(iii) For any blocking set B', either 

B t ( ' 5 { X 1 , . . , X 4 }  -~- {Xl,X3} , or  

B'~  {xx,...,x4} = {x2,x,}. 

Define a bijection f of X' by 
f (x l )  = x 3, 

f(x3) = x 1 ,  

f ( x ) = x  for all x # x x , x 3  

By (iii),f ~ Aut(B(M)). But f ~ Aut(s¢), since the image of the two-point line 
{x3,x4} is not a line. 
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